首页> 外文OA文献 >Si/SiGe heterointerfaces in one-, two-, and three-dimensional nanostructures: their impact on SiGe light emission
【2h】

Si/SiGe heterointerfaces in one-, two-, and three-dimensional nanostructures: their impact on SiGe light emission

机译:一维,二维和三维纳米结构中的Si / SiGe异质界面:它们对SiGe发光的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fast optical interconnects together with an associated light emitter that are both compatible with conventional Si-based complementary metal-oxide-semiconductor (CMOS) integrated circuit technology is an unavoidable requirement for the next-generation microprocessors and computers. Self-assembled Si/Si1\u2212xGex nanostructures (NSs), which can emit light at wavelengths within the important optical communication wavelength range of 1.3\u20131.55 \u3bcm, are already compatible with standard CMOS practices. However, the expected long carrier radiative lifetimes observed to date in Si and Si/Si1\u2212xGex NSs have prevented the attainment of efficient light-emitting devices, including the desired lasers. Thus, the engineering of Si/Si1\u2212xGex heterostructures having a controlled composition and sharp interfaces is crucial for producing the requisite fast and efficient photoluminescence (PL) at energies in the range of 0.8\u20130.9 eV. In this paper, we assess how the nature of the interfaces between SiGe NSs and Si in heterostructures strongly affects carrier mobility and recombination for physical confinement in three dimensions (corresponding to the case of quantum dots), two dimensions (corresponding to quantum wires), and one dimension (corresponding to quantum wells). The interface sharpness is influenced by many factors, such as growth conditions, strain, and thermal processing, which in practice can make it difficult to attain the ideal structures required. This is certainly the case for NS confinement in one dimension. However, we demonstrate that axial Si/Ge nanowire (NW) heterojunctions (HJs) with a Si/Ge NW diameter in the range 50\u2013120 nm produce a clear PL signal associated with band-to-band electron\u2013hole recombination at the NW HJ that is attributed to a specific interfacial SiGe alloy composition. For three-dimensional confinement, the experiments outlined here show that two quite different Si1\u2212xGex NSs incorporated into a Si0.6Ge0.4 wavy superlattice structure display PL of high intensity while exhibiting a characteristic decay time that is up to 1000 times shorter than that found in conventional Si/SiGe NSs. The non-exponential PL decay found experimentally in Si/SiGe NSs can be interpreted as resulting from variations in the separation distance between electrons and holes at the Si/SiGe heterointerface. The results demonstrate that a sharp Si/SiGe heterointerface acts to reduce the carrier radiative recombination lifetime and increase the PL quantum efficiency, which makes these SiGe NSs favorable candidates for future light-emitting device applications in CMOS technology.
机译:与传统的基于Si的互补金属氧化物半导体(CMOS)集成电路技术兼容的快速光学互连以及相关的发光器是下一代微处理器和计算机不可避免的要求。自组装的Si / Si1 \ n2212xGex纳米结构(NSs)可以发射重要光学通信波长范围为1.3 \ u20131.55 \ u3bcm内的波长的光,已经与标准CMOS规范兼容。然而,迄今为止在Si和Si / Si / Si1xGex NS中观察到的预期的长载流子辐射寿命阻碍了包括所需激光器在内的高效发光器件的实现。因此,具有受控组成和尖锐界面的Si / Si1 \ u2212xGex异质结构的工程设计对于在0.8 \ u20130.9 eV范围内的能量下产生必需的快速有效的光致发光(PL)至关重要。在本文中,我们评估了异质结构中SiGe NSs和Si之间的界面性质如何在三个方面(对应于量子点的情况),二维(对应于量子线),对物理限制的载流子迁移率和重组产生强烈影响,一维(对应于量子阱)。界面的锐度受许多因素的影响,例如生长条件,应变和热处理,这在实践中可能使其难以获得所需的理想结构。一维NS约束当然是这种情况。但是,我们证明,Si / Ge NW直径在50 \ u2013120 nm范围内的轴向Si / Ge纳米线(NW)异质结(HJs)会产生与NW的带到带电子\ u2013空穴重组相关的清晰PL信号HJ归因于特定的界面SiGe合金成分。对于三维约束,此处概述的实验表明,两个完全不同的Si1 \ u2212xGex NSs合并到Si0.6Ge0.4波浪形超晶格结构中,显示出高强度的PL,同时具有比其短1000倍的特征衰减时间。在传统的Si / SiGe NSs中发现。在Si / SiGe NSs中实验发现的非指数PL衰减可以解释为是由于Si / SiGe异质界面上电子与空穴之间的分离距离变化而引起的。结果表明,尖锐的Si / SiGe异质界面可降低载流子的辐射复合寿命并提高PL量子效率,这使这些SiGe NSs成为CMOS技术中未来发光器件应用的理想候选者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号